前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住给大家分享一下。点击跳转到网站:https://www.captainai.net/dongkelun
前言
最近在学习总结机器学习常用算法,在看spark机器学习决策树的官方示例时,发现用到了几个特征处理的类,之前没学习过,所以查了一下,感觉spark在特征处理方面的类还是挺多的,所以准备总结记录一下相关的用法,首先总结一下决策树中用到的几种。
1、VectorIndexer
根据源码注释,VectorIndexer是用于在“向量”的数据集中索引分类特征列的类(Class for indexing categorical feature columns in a dataset of Vector
),这看起来不太好理解,直接看用法,举例说明就好了。
1.1 数据
我们用普通的数据格式即可:
data1.txt1
2
3
41,-1.0 1.0
0,0.0 3.0
1,-1.0 5.0
0,0.0 1.0
其中第一列为label,后面的为features
spark读取数据程序(供参考):1
2
3
4
5
6
7
8import spark.implicits._
val data_path = "files/ml/featureprocessing/data1.txt"
val data = spark.read.text(data_path).map {
case Row(line: String) =>
var arr = line.split(',')
(arr(0), Vectors.dense(arr(1).split(' ').map(_.toDouble)))
}.toDF("label", "features")
data.show(false)
结果:1
2
3
4
5
6
7
8+-----+----------+
|label|features |
+-----+----------+
|1 |[-1.0,1.0]|
|0 |[0.0,3.0] |
|1 |[-1.0,5.0]|
|0 |[0.0,1.0] |
+-----+----------+
1.2 代码
用法一:通过设置MaxCategories1
2
3
4
5
6
7
8
9
10
11
12
13
14import org.apache.spark.ml.feature.VectorIndexer
val indexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexed")
.setMaxCategories(2)
val indexerModel = indexer.fit(data)
val categoricalFeatures: Set[Int] = indexerModel.categoryMaps.keys.toSet
println(s"Chose ${categoricalFeatures.size} categorical features: " +
categoricalFeatures.mkString(", "))
val indexedData = indexerModel.transform(data)
indexedData.show(false)
结果1
2
3
4
5
6
7
8
9Chose 1 categorical features: 0
+-----+----------+---------+
|label|features |indexed |
+-----+----------+---------+
|1 |[-1.0,1.0]|[1.0,1.0]|
|0 |[0.0,3.0] |[0.0,3.0]|
|1 |[-1.0,5.0]|[1.0,5.0]|
|0 |[0.0,1.0] |[0.0,1.0]|
+-----+----------+---------+
可以看出选择了一个分类特征索引0,即第一个特征,设置MaxCategories为2,因为特征1只有两个值[-1.0,0.0]小于等于2所以会被索引,索引从零开始,而第二个特征有三个值[1.0,3.0,5.0],所以被认为是连续值,不会被索引,即保留原值。
将MaxCategories设为5,重新跑一下上面的代码1
2
3
4
5
6
7
8
9Chose 2 categorical features: 0, 1
+-----+----------+---------+
|label|features |indexed |
+-----+----------+---------+
|1 |[-1.0,1.0]|[1.0,0.0]|
|0 |[0.0,3.0] |[0.0,1.0]|
|1 |[-1.0,5.0]|[1.0,2.0]|
|0 |[0.0,1.0] |[0.0,0.0]|
+-----+----------+---------+
这次选出两个特征都进行索引,这是因为每个特征值的数量都小于5,可以看出,索引值从0开始,依次加1,对应的原始特征值也是按大小排序对应的。
2、StringIndexer
StringIndexer和上面的VectorIndexer类似,是将label列进行重新编号,为了便于理解,我们重新造一个数据,只看label就好了
2.1 数据
data2.txt1
2
3
4
5
6
710,-1.0 1.0
10,0.0 3.0
7,-1.0 5.0
5,0.0 1.0
6,0.0 1.0
6,0.0 1.0
6,0.0 1.0
读数程序和上面的一样,我们直接看一下StringIndexer代码和效果吧~
2.2 代码
1 | import org.apache.spark.ml.feature.StringIndexer |
结果1
2
3
4
5
6
7
8
9
10
11+-----+----------+------------+
|label|features |indexedLabel|
+-----+----------+------------+
|10 |[-1.0,1.0]|1.0 |
|10 |[0.0,3.0] |1.0 |
|7 |[-1.0,5.0]|2.0 |
|5 |[0.0,1.0] |3.0 |
|6 |[0.0,1.0] |0.0 |
|6 |[0.0,1.0] |0.0 |
|6 |[0.0,1.0] |0.0 |
+-----+----------+------------+
从结果一眼可以看出,该类将label重新编号了,也是从零开始,但是不是按数值(因为StringIndexer从名字上就可以看出是将string类型的转出index)大小对应,是按label出现的频次排序的,出现频次最高索引为0,依次类推,如6出现了三次则索引后为0.0。
既然提到了是将string类型的进行索引,那么简单的造个数看下效果吧,我想实际分类中字符类型的label也很多吧,比如根据特征分类胖瘦等
名字还是data2.txt吧~1
2
3
4
5thin,-1.0 1.0
fat,0.0 3.0
fat,-1.0 5.0
thin,0.0 1.0
fat,0.0 1.0
将数据替换一下,重新跑一下上面的程序1
2
3
4
5
6
7
8
9+-----+----------+------------+
|label|features |indexedLabel|
+-----+----------+------------+
|thin |[-1.0,1.0]|1.0 |
|fat |[0.0,3.0] |0.0 |
|fat |[-1.0,5.0]|0.0 |
|thin |[0.0,1.0] |1.0 |
|fat |[0.0,1.0] |0.0 |
+-----+----------+------------+
2.3 注意
利用训练好的模型还转化新来的数据,可能会碰到异常,为了简单起见,还是用上面的thin,fat,假如新来的数据的label里有既不是thin也不是fat的咋办,比如middle(只是举例)或者异常数据。
data2new.txt1
2
3thin,-1.0 1.0
fat,0.0 3.0
middle,1.0 2.0
spark 提供了两种解决方法1
2
3
4
5val labelIndexer = new StringIndexer()
.setInputCol("label")
//.setHandleInvalid("error")
.setHandleInvalid("skip")
.setOutputCol("indexedLabel")
1、默认设置,也就是.setHandleInvalid(“error”):会抛出异常1
Caused by: org.apache.spark.SparkException: Unseen label: middle
2、.setHandleInvalid(“skip”) 忽略这些label所在行的数据,正常运行,将输出如下结果:1
2
3
4
5
6+-----+----------+------------+
|label|features |indexedLabel|
+-----+----------+------------+
|thin |[-1.0,1.0]|1.0 |
|fat |[0.0,3.0] |0.0 |
+-----+----------+------------+
稍微有点啰嗦,附下完整代码吧~
2.4 完整代码(供参考理解)
1 | package com.dkl.blog.spark.ml.featureprocessing |
3、IndexToString
IndexToString 的作用是将StringIndexer转化的结果转回去,实际应用中大概是这样,将字符型的label转换为数值代入算法模型训练预测,这时候预测的结果是StringIndexer转化的数值型,为了便于直观展示,需要变换回去
3.1代码
接上面2.2的代码1
2
3
4
5
6import org.apache.spark.ml.feature.IndexToString
val labelConverter = new IndexToString()
.setInputCol("indexedLabel")
.setOutputCol("predictedLabel")
val predict = labelConverter.transform(indexedData)
predict.show(false)
3.2 结果
1 | +-----+----------+------------+--------------+ |
根据结果可以看到该类又把indexedLabel转换为和原来的label一样的类型了
4、附录
当然在实际的算法中是要将预测后的数据进行转化的,所以为了便于理解,附上一个决策树分类的代码示例,因为这篇不是讲决策树的,所以这里不展开讲解了。
4.1 数据
data3.txt1
2
3
4
5
6
7
8
9
10thin,1.5 50
fat,1.5 60
thin,1.6 40
fat,1.6 60
thin,1.7 60
fat,1.7 80
thin,1.8 60
fat,1.8 90
thin,1.9 70
fat,1.9 80
其中第一个特征为身高,第二个特征为体重,数据来源于:用Python开始机器学习(2:决策树分类算法),(数据是作者主观臆断,具有一定逻辑性,但请无视其合理性)
4.2 代码及结果
该代码主要来自官方示例。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76package com.dkl.blog.spark.ml
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.DecisionTreeClassificationModel
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{ IndexToString, StringIndexer, VectorIndexer }
import org.apache.spark.sql.SparkSession
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.sql.Row
object DecisionTreeExample {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.master("local")
.getOrCreate()
import spark.implicits._
val data_path = "files/ml/featureprocessing/data3.txt"
val data = spark.read.text(data_path).map {
case Row(line: String) =>
var arr = line.split(',')
(arr(0), Vectors.dense(arr(1).split(' ').map(_.toDouble)))
}.toDF("label", "features")
// Index labels, adding metadata to the label column.
// Fit on whole dataset to include all labels in index.
val labelIndexer = new StringIndexer()
.setInputCol("label")
.setOutputCol("indexedLabel")
.fit(data)
// Automatically identify categorical features, and index them.
val featureIndexer = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(4) // features with > 4 distinct values are treated as continuous.
.fit(data)
// Split the data into training and test sets (30% held out for testing).
val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))
// Train a DecisionTree model.
val dt = new DecisionTreeClassifier()
.setLabelCol("indexedLabel")
.setFeaturesCol("indexedFeatures")
// Convert indexed labels back to original labels.
val labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("predictedLabel")
.setLabels(labelIndexer.labels)
// Chain indexers and tree in a Pipeline.
val pipeline = new Pipeline()
.setStages(Array(labelIndexer, featureIndexer, dt, labelConverter))
// Train model. This also runs the indexers.
val model = pipeline.fit(trainingData)
// Make predictions.
val predictions = model.transform(testData)
// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5)
// Select (prediction, true label) and compute test error.
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("indexedLabel")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println("Test Error = " + (1.0 - accuracy))
val treeModel = model.stages(2).asInstanceOf[DecisionTreeClassificationModel]
println("Learned classification tree model:\n" + treeModel.toDebugString)
}
}
结果:
因为训练数据和测试数据是随机分的,所以每次跑的结果不太一样。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21+--------------+-----+----------+
|predictedLabel|label| features|
+--------------+-----+----------+
| fat| fat|[1.5,60.0]|
| fat| fat|[1.9,80.0]|
| fat| thin|[1.5,50.0]|
+--------------+-----+----------+
Test Error = 0.33333333333333337
Learned classification tree model:
DecisionTreeClassificationModel (uid=dtc_4f851a4dd870) of depth 3 with 7 nodes
If (feature 1 <= 70.0)
If (feature 0 <= 1.6)
If (feature 1 <= 40.0)
Predict: 0.0
Else (feature 1 > 40.0)
Predict: 1.0
Else (feature 0 > 1.6)
Predict: 0.0
Else (feature 1 > 70.0)
Predict: 1.0
参考资料
https://blog.csdn.net/shenxiaoming77/article/details/63715525